Berkeley Lab

3Q4: Paolo Ferracin

A look at the people behind the science…

From ATAP News, November 2020

Paolo Ferracin

Paolo’s career has bridged CERN and Berkeley Lab. After being a research associate and doctoral student at CERN in the late 1990s, he earned his doctorate in 2002 at Politecnico di Torino, Turin, Italy, where his thesis topic was mechanical and magnetic analysis of the Large Hadron Collider main dipole. Paolo then came to our Superconducting Magnet Program as a postdoctoral researcher and was hired as a staff scientist. In 2011 he moved back to CERN as a staff scientist and project leader, highly involved with the US LHC Accelerator Research Program (LARP), then the vehicle for US technical participation in the LHC accelerators. Last year he was successfully recruited back to Berkeley Lab as a Senior Scientist. He serves as a researcher and as deputy in our Superconducting Magnet Program.

What attracted you to Berkeley Lab?

More …

I have always considered Berkeley Lab a unique laboratory. Throughout my career, I have worked on the R&D of superconducting magnets for particle accelerators. This activity is usually carried out in laboratories dedicated to particle accelerators for nuclear physics or high energy physics applications. Instead, the work performed by the Lab’s Superconducting Magnet Program (SMP), which I joined in February 2020, is done within the framework of a multiprogram science laboratory. The broad spectrum of scientific activities, which include, in the ATAP Division, different technologies of particle accelerators, and, in the other division, energy, environment, computing and bio science, make Berkeley Lab an incredibly stimulating environment. And this is what attracted me here.

From your standpoint, what were the highlights and challenges you had to overcome in FY2020?
Ahh, 2020! How will we ever forget this year?! Well, shelter-in-place was established due to the spread of the COVID-19 in the Bay Area just a few weeks after I started working in the Superconducting Magnet Program. So, adjusting to what has been recurrently called the “new normal” was not easy. Working amidst the uncertainty of the course of the pandemic was for me, and I imagine for many others, the biggest challenge. But I must say that I have been impressed by the resilience of the group and of the Lab in general, and by how everybody, really everybody, worked hard and managed to adjust their work style and schedule in such a way that we could continue to carry out advanced R&D in these difficult times.

What will you focus on in FY2021?
I hope that one of the focuses for next year will be to go back to “good old normal”, characterized by in-person meetings and face-to-face discussions with colleagues on the next generation of superconducting magnets. Apart from this social aspect, and more specifically on the SMP activities, we will continue assembling 4.2 m long Nb3Sn magnets to be shipped to CERN for the High-Luminosity project. For sure, new and interesting analysis on magnet performance will come from the large amounts of data generated by these magnets. Also, we are entering the engineering design phase of the Test Facility Dipole, a large aperture magnet for High energy and Fusion applications, which will explore the limits of Nb3Sn superconducting technology. Finally, as part of the Magnet Development Program, we will continue the R&D towards the next generation of particle accelerator magnets, addressing quench performance and the use of new “High-Temperature” superconductors. So, I am sure it will be a very exciting year for the superconducting magnet community.