Berkeley Lab

ATAP Student Jonathan Lee Receives 2021 NDSEG Fellowship at FSU

After an article by Trisha Radulovich of Media Services at the FAMU-FSU College of Engineering

Jonathan Lee at Berkeley Lab

Jonathan Lee with equipment for measuring residual resistivity ratio in one of ATAP’s superconducting magnet labs. Photo courtesy Jonathan Lee.

Jonathan Lee, a student in ATAP Division’s Superconducting Magnet Program and an entering engineering doctoral student at Florida State University (FSU), has received the National Defense Science and Engineering Graduate (NDSEG) Fellowship. The fellowship is considered one of the country’s most prestigious honors for those beginning graduate work.

Lee will soon begin his graduate studies at the Florida A&M University-FSU College of Engineering (via FSU), having earned his bachelor’s degree in material science and engineering from the University of California-Berkeley this spring (with a 3.985 grade point average).

Since January 2019, while studying at UC-Berkeley, Lee has interned as a student research assistant in ATAP’s Berkeley Center for Magnet Technology and Superconducting Magnet Program. Working primarily on the High Luminosity Large Hadron Collider Accelerator Upgrade Project (HL-LHC AUP) under the mentorship of ATAP staff scientist Ian Pong, he performed sample extractions and measurements of residual resistivity ratio for the niobium-tin superconducting cables; put together cable quality-control reports for committee evaluation; and developed process optimizations (such as automated spreadsheets and cost-effective sample sorters.

“I thought that my time at LBNL was supposed to be a simple data collection internship,” says Lee. “I hoped to hone my technical skills and gain some engineering experience while I decided what direction to take my career after college. Now, two and a half years later, I can say that LBNL and ATAP did all that — but to an extraordinary degree. Not only did I hone my technical skills, I acquired a host of new ones, ranging from sample prep and soldering to ADC programming and metallographic imaging. The engineering experience was not just data collection, but encompassed the creative troubleshooting of one-of-a-kind diagnostic systems, the careful handling of large databases, and all the nuances of fitting into an enormous international project.”

He found the career direction that he sought as well. At FSU, Lee will be doing his research at the Applied Superconductivity Center (ASC) and the National High Magnetic Field Laboratory (NHMFL), closely associated with the college. He will be working under the supervision of NHMFL Chief Scientist and Mechanical Engineering Professor David Larbalestier.

“I’ll always be grateful to LBNL, ATAP, and in particular Dr. Ian Pong — perhaps the best mentor I could have ever hoped to have,” says Lee.

Pong returns the compliment. “Jonathan has an insatiable appetite for knowledge and an unusual ability to grasp the key concepts,” he says, adding that he is “a fantastic team member and has shown qualities as an excellent future team leader.”

The fellowship will provide three years of funding to support Lee’s research on quality-assurance processes for high-temperature superconductors. The study may improve the performance of the material that powers fusion applications.

“For the past half-century, no one has been able to build a fusion power plant that actually produces more energy than it takes in,” Lee said. “This is changing with the industrialization of high-temperature superconductors. In order to make a difference for the world’s energy needs, tens of thousands of fusion plants will need to be built. They will need lots of magnets, and those magnets will require superconducting material that will need to be quality-assured.”

The research efforts at the NHMFL, universities, fusion startups and manufacturers are producing fusion-scale superconducting magnets that put out magnetic fields exceeding 20 Tesla. Innovations in magnet technology may make fusion an energy alternative in the future.

“The NDSEG Award will help me focus on my research so I can concentrate on being a better scientist,” Lee says. “The fellowship is important in providing mentoring opportunities and connections with fellow researchers. You never know when such connections could open a door or provide a new perspective or lead to a novel idea.”

The three-year NDSEG Fellowship is one of the most comprehensive available, covering tuition, fees, travel and more for the scholar.

The National Defense Science and Engineering Graduate (NDSEG) Fellowship is funded by the Air Force Office of Scientific Research, the Army Research Office, and the Office of Naval Research.